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We present a criterion for uniform rotundity of Musielak—Orlicz sequence spaces.
In particular, we get a better characterization of uniform rotundity of Banach
spaces [({p;}), called Nakano spaces, considered by K. Sundaresan (Studia
Math. 39 (1971), 227-331.  © 1986 Academic Press, Inc.

INTRODUCTION

Geometrical properties of Banach spaces play an important role in the
theory of approximation and optimization. The property of uniform rotun-
dity cnsures, for example, the cxistence and unicity of nearest points in best
approximation problems. Moreover, uniformly rotund Banach spaces are
E-spaces where “all convex norm-minimization problems are ‘strongly
solvable’ and all convex best approximation problems are ‘well posed’ in
the sense of Hadamard” [4]. Among the many papers concerning
approximation problems, some, e.g., [ 3, 10], deal with best approximation
in Orlicz spaces. It is important there to know how rotundity of Orlicz
space is expressed in terms of Young functions. So it seems worthwhile to
look for criteria for the validity of various geometrical properties in spaces
of Orlicz type.

We know a criterion for uniform rotundity of Orlicz sequence space [8]
and a sufficient condition and a little weaker necessary one for this
property in Nakano space [12]. The Nakano spaces, like the Orlicz spaces,
are particular cases of more general Musielak—Orlicz spaces. Here we will
find necessary and sufficient conditions stated in terms of Young functions
for uniform rotundity of such spaces. In particular, we get a criterion for
the validity of this property in Nakano spaces.

Now we introduce the basic notations and definitions. In the following,
let R be the real line, R =[0, +o0) and N the set of natural numbers.
For arbitrary a, be R, we write min(a, b)=a A b, max(a, by=a v b. Let
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¢ = (¢,), where ¢, are Young functions, ie., ¢,: R, - R are convex and
©,(0)=0 for all neN. Let ¢, ':R, - R, be the generalized inverse
function, ie., ¢! (v) =inf{u>0: ¢, (1) > v}. The Musielak-Orlicz space /,
1s the set of all real sequences x = («,) such that

LU =Y onlilu) =Y 0n(lu) =Y on(Alu,]) < 0
N n

n=1

for some A>0 dependent on x. If all functions ¢, are identical then [,
becomes an usual Orlicz space. Here, [, is endowed with Luxemburg norm,
ie, x| =inf{e>0:1,(x/e) <1} (for details of Musielak—Orlicz spaces sce
[117). Let us define a new function ¢ = (y,,} as follows,

V() =0,(b,u) fO<u<l

=u fu>1,

where ¢, (b,) = 1. The spaces /, and /, are isometrically equal. Indeed, let
T:1,—1, be such that Tx =y, where y = (u,/b,) for x = (u,). If ¢ >0 is such
that I, (y/e) <1 (which is equivalent to 7,(x/e)<1) then |u,/b,e| <1 and
50 I, (3/e) = S5 o nfb,el) = 35, 0, (Ifel) = 1, (x/e). It means that
Il =llx|,, where || ||, (]l I|,) denotes the Luxemburg norm in /,(/,).

Henceforth, by virtue of the above considerations, we assume that
9,(1)=1, M=sup, ¢,(2)< 0, and ¢, are convex on the interval [0, 1]
and are nondecreasing on R . However, we must remember that ¢, may
be not convex on the whole set R ,. Now, define a few conditions concern-
ing the function ¢.

It is said that ¢ satisfies the condition J, [7] if there exist constants
k, >0 and a nonnegative sequence (c,)e!; such that

@, (2u) <k, (u)+c, (0.1)

for each ne N and ue R, when ¢, (u) <. It is not difficult to show that
under additional assumptions made on ¢, the condition &, is fulfilled iff
there exists a nonnegative sequence {c,) €/, such that the inequality (0.1} is
fulfilled for each neN and all ue(0,1). Indeed, if §<¢,(u)<1 then
@n(2u) <M= (M/5) 6 < (M/0) ¢, (u). Thus ¢,(2u)< (kv M[0) ¢, (u)+c,
for all u<1. We also note that ¢ satisfies the condition o, iff there are a
constant £ and a nonnegative sequence (c,) such that

T oc)<oo  and  ¢,(2u)<ke,(u) (02)

n=1

for uelc,, 11, neN. If, in addition, each ¢, vanishes only at zero, then,
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for each ¢> 0, a sequence (c,) and a constant k in (0.2) may be chosen in
such a way that

i ¢,(c,)<e. 0.3)

We say that ¢ satisfies the condition (*) if for each e (0.1) there exists
0 >0 such that ¢, (#) <1 —¢ implies ¢,((1+6)u)< 1 forall ueR__, neN.
Let us introduce a function s: R, x R, — [0, + o) in the following way,

h(u, v) =20((u +0)2)/(Pw) + B(v)) if P(u)v P(v)>0
=0 if &(u)v d(v)=0

for an arbitrary Young function @. If, in particular, @ is equal to ¢, then
we will denote the function 4 by 4,,.

Let d be positive number. It is said that ¢ is uniformly convex in the d-
neighbourhood of zero if for each ae [0, 1) there exist d € (0, 1) and a non-
negative sequence (d,) such that ¢,(d,)<d and

Y 0.(d,) <o and h,(u,au) <1 -3
n=1

for ue(d,, ¢, '(d)], neN. Recall that a Young function @& is strictly con-
vex on an interval [a, b] if @((u+v)/2)<(DP(u)+ D(v))/2 for every
u,vela, b], u#v. A Banach space (X, || ||) is said to be uniformly rotund
[2] if for each ¢ >0 there exists §(¢) >0 such that if ||x|| =1, |y} =1, and
x—yl =e then ||(x+y)/2|| <1~0d(e) (equivalently we can put |x| <1,
|yl <1 instead of | x| =1, ||y =1). Similarly, it is said that the modular
I, is uniformly rotund if for every ¢>0 there exists d(¢) >0 such that if
I,(x)=1,1,(y)=1,and I,(x—y)>¢ then I,((x+y)/2)<1—d(e).

We give the following known results, needed in the sequel, for com-
pleteness.

0.1. TaEoREM. (a) [6] The norm and modular convergence are equivalent
inl,, ie, [|xl|l,>0<1,(Ax) -0 for some 4> 0, iff the function ¢ satisfies
the condition 6, and each @, vanishes only at zero.

(b) L7] We have an equivalence || x| =1<1,(x)=1 iff the function ¢
satisfies the condition 8.

0.2. TueoreM [7]. The space [, is rotund iff the following conditions are
satisfied:

—the function ¢ fulfills the condition §,,
—there exists a sequence (a,) such that a,e [0, 1],
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o, {a,)+o.a,) =1 for n#m and each @, is strictly convex on [0, a,],

—each function @, vanishes only at zero.

0.3. LemMma [9]). The function h has the following properties:
(1) Au, v)= h(v, u),
(2) a function u— h(u, v) is nondecreasing on an interval {0,v] for

each ve R .

0.4, LemMmA [9). If @ is a strictly convex Young function on an interval
[0,a] then for every ¢>0, d,,d;e(0,a], dy<d,, there exsts
p=ple, d, d,)e(0, 1) such that

h(“: U) < 1 —D

fiu—vlzeuvov)anduvveld,d,].

RESULTS
1. LEMMA. If ¢ satisfies the condition (*) then there exists roe (0, 1)
such that inf, @, (ro) = My>0.

Proof. Suppose, to the contrary, inf, ¢, (r) =0 for every re (0, 1). Then
there exists m, € N such that ¢, (1—1/n)<1/2 for every ne N. Hence, by
the condition (*), we have

@, (1 +8)1—1/n)) <1 {i.1)

for ail meN and some é€(0,1). But (1 +5){1—1/n)>1 for sufficiently
large n, ie, ¢, {(1 +38)(1—1/n))>1 for every i, which contradicts (1.1).
2. LEMMA. If o satisfies the conditions (*) and 0, and each ¢, vanishes

only at zero then inf, 6, (r) >0 for every re (0, 1).

Proof. We have My=inf, ¢,(ro)>0 for some r,e{0,1), by the
previous lemma. But

@n(rof2) 2 (1/k)@n(ro) —c,) = (1/k) (Mo —c,),

by the condition d,. We can choose »n, such that inf,., (Mys—c,}>0,
because c,,— 0. Putting

M, = iwf (1/k)(Mo—c,) n inf @,(ro/2)
n <n<

n> sn<n
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we have inf, ¢,(ro/2)=M,>0. Similarly it can be shown that
inf, ¢, (ro/2") >0 for each natural number i. By virtue of monotonicity of
¢, this ends the proof.

3. LeMMA. If @ satisfies the condition &, then the family {¢,} is equicon-
tinuous on the interval [0, 1]: ie., for every ¢ >0 there exists 6 >0 such that
lu—v| <6 implies |, (u)— @,(v)| <& for all u,ve[0,1], neN.

Proof. For a contrary there exists & >0, sequences («,,), {(v,,) < [0, 1]
and a subsequence (#,,) of natural numbers such that

|um_vm|<1/m and l(pnm(um)_(an(Um)|>8 (31)

for every m e N. Since the functions ¢,, are uniformly continuous on [0, 1]
we can assume without loss of generality that n, <n,< ---. Sequences
(#,,), (v,,) must possess accumulation points. Let us note that the
accummulation points of (u,,)} and v, ) are equal: this results simply from
(3.1).

First, let the number 1 be a point of accumulation of (u,,) and (v,,).
Assume for simplicity that u,, -1 and »,, » 1 and

Oy () Z @, (V) (3.2)

for all meN. Then ¢, (v,,)<o,, (4,)—e<1—g¢, by (3.1). Hence and by
the assumed condition (*) we have ¢, ((1+9J)v,,)<1 for each me N and
some 6> 0. So (1+6)v,,< 1 for every me N, which contradicts v,, — 1.

Now, let 0 be a point of accumulation of (u,,) and (v,,). Suppose u,, — 0,
v,,— 0, and the inequality (3.2) holds. Also, let us note that ¢, (u)<u
for all ue[0,1]. Therefore and by virtue of (3.1) we have
e<e+o, (v,) <@, (4,)<u, for every me N, which contradicts «,, — 0.

Finally, let s € (0, 1) be a point of accumulation of («,,) and (v,,). Taking
ae (0, s A (1—s)) we have

(@n(s+a)—@,(s))/a<(1—a,(s))(1—s),
(@.(s)—@n.(s—a))/a<(1—@,(s—a))/(1—(s—a)),
by convexity of ¢,. Hence
wn(S+a)<?n(S)+a/(1—S), (33)
@n(s) < @,(s—a)+a/(1—ys),

for each ne N. However, u,,, v,,€ [s —a, s + «] for infinitely many indices.
Therefore

1O, () = @ (V)] S @, (s + 2) — @, (s — 2) < 20/(1 — 5)
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for infinitely many indices m and ae (0,5 A (1—s5)), by (3.3) and the
monotonicity of ¢,. Taking « < (1 —s)/2 we get a contradiction with (3.1).

4. LemMA. The function ¢ is uniformly convex in the d-neighbourhood of
zero iff for each e€(0, 1) there exist pe (0, 1) and a nonnegative sequence
(d,) such that ¢,(d)<d, Y2, ¢,(d,} < o0, and

hn(“} D)< 1 —P

flu—vlze(uvv)yanduvve(d,, ¢, (d)], neN.

Proof. Let (d,) and 6 be a sequence and a constant from the definition
of uniform convexity of ¢, chosen for a=1-—z Let u,v satisfy the
assumptions of the lemma and let u>v». Then ue(d,, ¢ (d)] and
(1—-&)uzv. Hence A, (u, v) <h,(u, (1 —&)u), by the property (2) of 4, in
Lemma 0.3. Thus, we have A,(x,v)<<1—p, by uniform convexity of o,
putting p=4. The converse is immediate if we apply the inequality
h,{u,v)<1—pfor e=1—a and v=au, where uc(d,, ¢, (d)], ac [0, 1).

5. LemMma.  [f @ is uniformly convex in the d-neighbourhood of zero and
each ¢, is strictly convex on the interval [0, ¢ (d)], respectively, then for
every ¢€ (0, 1) there exists pe(0,1) and a nonnegative sequence (d,) with
Yo ¢,(d,)<e and such that the previous lemma holds with p and (d,)
instead of p and (d,,).

Proof. We can assume that ¢ <d. Let (d,) and p be as in the previous
lemma. We have 32, ., ¢,(d,) <&/2 for some nyeN. Let a, be positive
numbers such that 3", ¢,(a,)<¢/2. Since ¢, are strictly convex on
[0, ¢ 71 (d)], so h,(u,v)<1—p, for some p,e(0,1) if ju—v|>e(uv o)
and u v vel(a,, ¢ (d)] for n=1,.., ny, by Lemma 0.4. Putting

d,=d

n

if n=ng+1,n,+2,..

=aq if n=1,., 8,

n

and p=p, v p,V - v p, v p, Lemma 4 holds with  and (d,) in place of
p and (d,).

6. Lemma. If @ is uniformly convex in the d-neighbourhood of zero, ¢
satisfies the condition &, and each @, is strictly convex on the interval
[0, @, ' (d)], respectively, then for every e € (0, 1) there exist k>0, pe (0, 1)
and a nonnegative sequence (c,) such that Y *_, ¢,(2¢,) <¢ and

©n(2u) <ke, (1)
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foruelc,, 1] and

h,(u,v)<1—p

if lu—v|zeuvv)anduvve(c,, ¢, (d)], neN.

Proof. Functions ¢, are strictly convex on some neighbourhood of
zero, so they vanish only at zero. Hence and by the supposed condition 4,
(see also (0.3)) it follows the existence of a sequence (c;) and a constant
k>0 such that ¢,(2u)<ko,(u) for uelc,, 1], where 3,2, ¢,(2¢,) <e/2.
Moreover, we have Y%, ¢,(2d,)< o for a sequence (d,) from the
previous lemma, by the condition §,. Acting in a manner similar to that in
the preceding proof, we modify (d,) in such a way that 3= _, ¢,(2d,) <¢/2.
Putting ¢, =c,, v d, we end the proof of the lemma.

7. LeMMA. If @ is uniformly convex in the d-neighbourhood of zero and
satisfies conditions 6, and (*), and each @, is strictly convex on [0, o' (d)],
then for arbitrary o, pe [0, 1 satisfying the inequality 0<a<y=p A d
there exists pe (0, 1) such that

hn(u5 U)< t 4

Jor every neN, u,veR, if 0<u< o, (a) and ¢, ' (y)<v<1.

Proof. Let ¢,(u,)=0a, ¢,(v,)=y. Since ¢,(@,)—¢,(u,)=y—a>0,
there exists dy € (0, ) such that v, —u, > d, for every ne N, by Lemma 3.
Hence v, —u, = d,v,, because v,e(0,1]. Applying Lemma 5 with §, in
place of ¢ we find a nonnegative sequence (d,) and a constant g (0, 1)
such that 3’ , ¢,(d,)<d,<a<y and

hn(unavn)gl—q (71)

for each neN, because v,—u,=d,v, and o¢,(u,) Vv e,(v,)=
ye(e,(d,),d]. Let ve [ (y), 1]. We have the inequalities

(Pn(U) R (Pn((un + vn)/z)
v—(u,+v,)2

(pn(v) N ((pn (un) + (pn(vn))/z
v—(u,+v,)/2

@n((u, +0)/2) < (4, + )2 —v) + ¢,(v),

(@n () + @, (0))/22 ((u, +0)/2 =0} + ¢,(v),

by the convexity of ¢,. Hence and by (7.1) we get
by (u,, v) < (a,+ (1= g)(a+7y)/2)/(a, + (2 +7)/2)

for each ne N, where a,= ¢, (v)(v —v,)/(v—u,) € (0,1). Since the function
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u—={u+b)(u+b,), b <b,, 1is increasing for wuef0,1], so
h,(u,, v}<1—p, where p=(qla+7v)/2)/(1 +(x+7)/2). Hence and by the
second property of 4, we obtain

hn(us U)Sl—p

forallneN, if ¢,(u)<a and y<p,(v) <1, which ends the proof.

1.1. Remark. (1) It is not difficult to show that uniform convexity of ¢
in the d-neighbourhood of zero implies this in the c-neighbourhood of zero
for ce (0, 4].

(2) Let N be a subset of N. We say that a family (¢, ), » 18 uniformly
convex in the d-neighbourhood of zero, if the function y =(y,) has this
property, where , =@, for ne N and ,=0 for n¢ N. In Lemmas 4-7 we
can replace the function ¢ by a family (¢,),c v, Obtaining the statements of
the lemmas not for all re N but only for ne N.

8. LemMa. Let (X, | ||) be a normed space. If {1 X—>R is a convex
SJunction in the set K(0,1)={xeX:||x||<1} and |f(x)]<M for all
x e K(0, 1) and some M >0 then f is almost uniformly continuous.in K(Q, 1);
ie, for all de(0,1) and ¢>0 there exists 6>0 such that |y|<d and
lx =yl <o implies | fix)— Ayl <e for all x,yeK(O, 1).

Proof. We can always suppose that M >1. Let g, (x)=flx+y)—-Ay).
It is enough to show uniform continuity of this function at zero with
respect to y € K(0, d). Note that g,(0) =0 and the function g,(x) is convex
for such arguments x for which |x+p <1 If |y <d and ||x|<i—4d
then |x+y|<1 and so |g,(x)<|filx+y)+]|Ay)<2M. Putting
d=(1—d)e/2M and taking ye K(0, d) and x e K(0, §}, we have

8,(x)<(e/2M) g, (2Mx/e) < {e/2M) 2M =, (8.1)

because  [2Mx/e|<1—d for xeK(0,0). Moreover 0=g,(0)<
(1/(1 4 ¢/2M)) g,(x) + ((¢/2M)/(1 + ¢/2M)) g,(—2Mx/e), which implies

2,(x) > (—¢/2M) g,(—2Mx/s) > s, (8.2)

because || —2Mx/e|| <1 —d for x e K(0, §).. The inequalities (8.1) and (8.2)
end the proof.

9. LeMMA. If the condition 0, is fulfilled then the following conditions are
equivalent:

(1) the function @ satisfies the condition {*),

(2) for every €€ (0, 1) there exists ne€ (0, 1) such that the inequality
I,(x)<1—¢ implies ||x|| <1—n for xel,.



310 ANNA KAMINSKA

Proof. (1)=>(2) Let £¢€(0, 1) be chosen arbitrarily and let x=(u,) be
such that I,(x)<1—& Then ¢,(|u,|)<1—¢ for each neN. Hence
©,((1 +8)u,|)<ko,(lu,l)+c,, where k and (c,) are the constant and the
sequence from the condition &,. Therefore I,((1+0)x)<P, with
P=k+Y>* c,<oo. Let us introduce a set 4 and a function
g: R, = [0, + 0] in the following way,

A={xel,:1,(x)<1—¢},
g(1)= sup 1, (4x),

for AeR,. The function g is convex, g(0)=0, g(l)<1-¢ and
g(1+8)< P< 0. Hence it is continuous on the interval [0, 1+J]. Thus
there exists 4,€ (1, 1 +J] such that g(4,) <1, by the Darboux property. It
means that I,(4ox)<1 for all xe 4. Then, putting n=1—1/4, we have
x|l <1—n for each xe A.

(2)= (1) For an arbitrary ¢ (0, 1) and ne N, let us take ue R, such
that ¢, (u) <1—e. If we put x=ue, then I,(x)=0¢,(u) <1—e. So, there is
ne(0,1) such that |x|<1-—# Hence simply I,(x/(1—#))=
@, (u/(1 —y))< 1. Putting § =#/(1 —#) we get the condition (1).

10. PROPOSITION. The condition

for every £>0 there exists 6 >0 such that I,(x)<1, I,(y)<1
and I ,(x—y)<é imply |1,(x)—1,(y)| <e for x,yel, (10.1)

holds if and only if the function ¢ fulfills the conditions (*) and &, and each
@, vanishes only at zero.

Proof. Assume the condition (*) does not hold. Then there exist ¢ >0
and sequences (6,,)=(1/m), (n,), (u,) such that ¢, (u,)<1-—¢ and
@, ((14+9,,)u,)>1. Without loss of generality, we can take n; <n, < -
Let

xmzumenm: ym:(l"l’am) Uy €5

where «,,€ (0, d,,) is such that ¢, ((1+0a,,)u,)=1 We have I,(x,)<]1,
I(rp)=1 and I, (X —Yn)= On, (tmit) <t (1~ £) < (1/m)(L —£) O,
when m — oo, because 0<a,,<9,,=1/m. However, |I,(x,,)—1,(y,)=
19, () — @, (1 + ) u,)| =1 -9, (u,)>e¢loreach me N, which means
that (10.1) is not fulfilled.

Now, suppose there exist ie N, u,e (0, 1) such that ¢,(u,)=0. Let us
take a number u; € (1 —u,, 1) and a sequence (u,,) such that ¢, (u,,)—0
when m — o0, Let

Xm =€ ymzulei+umei+l'
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Then 1,(x,)=1, I,(y,)<1 for sufficiently large m and I,(x,—y,)=
(pi(I—u1)+(pi-f—l(um):(PH—l(um)_)O’ m— 0. HOWCVCT, ‘I(a(xm)_ﬁr(p
()l = 1= 0,(t) = @,y (1,) > (1 — 9, (,))/2 > 0 for large m, which means
that (10.1) does not hold.

If the condition J, is not fulfilled then there exists a sequence (x,,}c/,
such that I (x,)—0 and |x,| » 0, by Theorem 0.1(a). We know that
x| = 0 iff I,(4x,) — 0 for every A>0 [11]. So, there is A>1 such that
I,(x,)—0and I,(ix,) # 0. We can always find A being arbitrarily close
to one. Then, let Ae(l,1/ry), where roe[1/2,1) is such that
My=inf, @,(ro) >0. The existence of such a number ry results from (*)
and Lemma 1. Suppose, without loss of generality, that 7,{(x,,) < M, and
I,(Ax,,) > ¢ for each me N and some ¢ (0, 1). Now we find subsets N, of
N such that

6/2< 1, (A 2w, ) <1 (10.2)

for each meN. Indeed, since /,(x,,) <My, @,(|u,,l) <M, for all neN,
where x,,= (u,,). We have |u,,| <r, for neN, by the definition of M.
Hence ¢,(Au,,|) <@, (Arq)<1. If there exists an index %k such that
Oe(Algm|)=>¢/2 then we put N,={k}. If it is not true then
Qi (Attt} + @ (Alug,l) <2(e/2) <t for each pair (k,[), k#1 We put
N, ={k, 1} if ¢ (Agnl)+ @, (Au,,l) =¢/2 for any pair (k, /). Continuing
this process we will find N, satisfying (10.2), because I,(ix,)>¢. If we
take

Vm = X ANy ymzlmeNma

we have I,(y,)<1, I,(y,)<1, by (10.2). Moreover, I, (¥, —y.)=
L(A-1)x, n)<(A—-1}1,(x,)>0, m—oc0, ‘because A—1<1.
However, [1,(7,)—1,(yu)l =1,(AxXpxn,) — 1, (Xmy,) = ¢e/4 for large m,
because 7,(x,,) —» 0 and the condition (10.2) holds. This shows again that
(10.1) cannot be fulfilled. In this way we have proved the necessity of the
conditions (*), 6, and ¢, (u) =0 iff u=0 for satisfying (10.1).

Now, suppose the function ¢ satisfies (*), ¢, and each ¢, vanishes only
at zero. First, we will show the following:

for each de(0,1) and &¢>0 there exists >0 such that
I,(x)<1,1,(y)<dand I,(x—y)<¢ imply i, (x)—1,(y)<e
for x, yel,. (10.3)

Indeed, by the assumed condition (*) and Lemma 9, |yl <d, for some
d,e(0,1). It is evident that |x|<1. Let d,>0 be the constant from
Lemma 8 chosen for ¢ and d; in place of 4 We find 6 >0 such that
I,(z)<¢ implies |z||<d; for zel,, by Theorem0.1. So, if I (x)<],
I,(y)<d, and [,(x—y)<é then |x| <1, |yl<d; and [x—yl|<é,.

640/47/4-4
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Hence |1,(x)—1,(y)| <& by Lemma 8, because I, satisfies the assumptions
of fon X=1,.

Further, let x=(u,), y=(v,) and [I,(x)<1, I,(y)<1l. We wil
investigate a few cases.

First, let ¢,,(Ju,,|) > 1/2 and ¢,,(|v,,]) > 1/2 for some index m. Let 5’ >0
from (10.3) be chosen for d=1 and ¢/2. So, if 3, ., ¢,(|lu,—v,|) <  then

Y oullud) = 2 @a(lv,l)| <2, (10.4)

n#m n#Em

because Y, ., ¢.(lu,l)<% and X, ., ¢,(v,)<i Taking 6,>0 from
Lemma 3 chosen for &2 we put 6" =inf, ¢,(d,). We have 6" >0, by our
assumptions and Lemma 2. Moreover, if ¢,(ju—v|)<d” then |u—v| <d,
and hence

[@a(u)— @, (v)] <e&/2 (10.5)

for all neN. Let us put §d=min(é',6"). If I,(x—y)<é then
Y @nll,—v,|)<é and ¢,,(|lu,, —v,])<d". Hence and by (10.4) and
(10.5) we get |I(x)—1,(y)| <e.

Now, let ¢,,(|u,,|)>1 and ¢, (|v,|) >4 for some indices m, k, m#k. Let
0 from (10.3) be chosen for d=4 and ¢/3. Since Y, ., . @.(lv.]) <3,

q)m(lvm|)<%, (pk(|uk|)<%5 80

() =L, (WI<| Y @ullu)— X @.(0)

n#mk n#mk
+ @i ([ve]) — @i (] )]
+ ‘(pm(lum”_qomuvml)"

if 1, (x—y) <4, by (103).

Finally, let ¢,(Ju,|)<3 for all ne N. Since I,(x)<1 so we find subsets
Ny, N, of N such that N=N,UN,, NynN,=F and I,(xyy,) <% and
I,(xyn,) <3 If we take 6 from (10.3) for d=13 and ¢/2 then we have

‘Icp(x)_l(p(y” <I¢(XXN1)_I¢(};XN1)|
+ o (Xt n) — Lo (yam)l <e

for x, y satisfying I, (x—y) <.
In all cases considered the number & is dependent only on ¢ and the
function ¢. This remark ends the proof.

11. PROPOSITION. The space 1, is uniformly rotund if and only if the
following conditions are satisfied.
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(1) the function ¢ satisfies the condition é,,
(2) the function ¢ satisfies the condition (*),
(3) each function @, vanishes only af zero,
(4)  the modular 1, is uniformly rotund.

Proof. Let the space [, be uniformly rotund. Then /, is rotund and
hence the function ¢ satisfies the conditions (1) and (3) (sece Theorem 0.2).

Now, assume (2) is not satisfied. Then there exists a constant ¢e (0, 1)
and sequences (d,); (m,)<=N, (u,)=(0, +00) such that 0<4, [0, m, <
my< -, @, (u,)<eand @, ((1+3,)u,)>1. Put m,=n, without loss of
generality. Let [, be positive numbers such that ¢,(/,u,)=1Since
Ie(1,1+6,) and |u,e,| =1;", so

lune.| —1 (11.1)

when n— o0, Let us take 7,e(0, +00) in such a way that
@ (yau,)=(14+¢)/2. Then y,— 1, because y,e(1,1+46,). Let v,=y,u4,,
w,=2u,—v,. Moreover, let 5,€(0, c0) be such that ¢,(s,)=(1—2¢)/2
Putting

Xp=02,€2, F 52, + 1€20 11> Vn=Wa,€2,

we have

I (%) = @2, (V20) + Qon 1 (S2n 1) = (L +8)/2+ (1 —¢)/2=1,
I(p(yn)z (PZn(zun_Un): (pZn((z_yn) un)< 1:

for all neN, because 2—y,<1. Moreover, [,{x,~y,)=0,,
(1020 = Wanl) + @2 s 1 (5204 1) 2 (1 —€)/2 for all neN. But (x,+y,)/2=
Unp€n+ (S2011/2) €2n 1 2 Uny€2ps which implies (X0 + ya)/21l =
ls,€5,] = 1, by the monotonicity of the norm and (11.1). This contradicts
the uniform rotundity of /.

Now, let I (x)=1, I,(y)=1, and I,(x—y) > e. Hence and by the well-
known properties of the Luxemburg norm we have |x| =1, |y{ =1, and
lx—yll =&,(e) for some ¢,(e)>0. Then [(x+ y)/2{ <1~ p(e) for some
ple)e(0,1). However, I,((x+y)/2)<[(x+y)/2], which shows the
uniform rotundity of the modular 7, ie., the condition (4).

Supposing the conditions (1)—(4), let us take x, y e/, such that | x| =1,
Iyl =1, and |x —y| >¢. There exists ¢,(¢) >0 such that I, (x —y)>¢, (e},
by (1), (3), and Theorem 0.1. We also have /,(x)=1 and I,(y}=1, by
Theorem 0.1(b}. So, there exists p,(e)e(0,1) such  that
I,((x+)/2)<1—p,(¢), by the assumption (4). Now, by virtue of (2) and
Lemma 9 we find p(e)e (0, 1) satisfying |{x + v)/2]l €1 — p{e), which ends
the proof of this theorem.
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1.2. Remark. Equivalently, under assumptions (1)}(3) of the above
proposition we can put I,(x)<1, I (y)<1instead of I,(x)=1, I,(y)=1
in the definition of uniform rotundity of the modular 7,,. It can be shown
by the same technique as that in the above proof.

12. LemMmA. If @ satisfies the condition 0, and all ¢, vanish only at zero
then the modular 1, is uniformly rotund iff

for each &> 0 there exists 6(e) >0 such that if I,(x)=1,(y)=1,
where x=(u,), y=(v,) are arbitrary with u,>0, v,>0, and
I, (x—y)=e, then I,((x+y)2)<1-6(e). (12.1)

Proof. Let us suppose the condition (12.1) is fulfilled and take x,y such
that 7,(x)=1,(y)=1 and I,(x — y) > ¢ There exists an index m such that

1,((x =) Xnygmy) = 8/2. Let
No={neN\{m}: u,v,<0}
Ny={neNqy:|u,| <lv,|}
Ny={neNq: [u,| > v}

and put
i,=1,, n=m v,=0,, n=m
=0, nenN, =0, nen,
=|u,|, otherwise, =|v,], otherwise,

where i#,,, D, are nonnegative numbers chosen in such a way that
2n Cnlln) + 0 ([uy]) = @ulin), iy, @ullva)+0n(lvnl) = @ (0,)
Denoting x = (i,), y=(v,) we have I, (x)=1,(y)=1 and I,((x+y)/2)<
I,((x+)/2), immediately. Moreover,

I, (X =y) Zmax(L,(x = ¥)/2 xnh Lo (X = 1) Anvgmpvg)- - (12:2)

Choosing a constant k and a sequence (c,,) in the condition §, so that they
satisfy (0.3) we get

1,((x—=»)/2 xwo) 2 1k 1, ((x = p) A no) — 8/4K. (12.3)

Since 7,((x —¥) xn\(m}) = 8/2, 50 I, (X~F)=¢/4 or I,(Xx—7)>¢/4k, by
(12.2) and (12.3).

The above lemma is very useful in the proof of the next theorem, because
the investigation concerning uniform rotundity of I, can be limited to
elements with nonnegative coefficients.
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1. THEOREM. The space 1, is uniformly rotund if and only if the following
conditions are satisfied:

(1) the function ¢ fulfills the condition J,;
(2) the function @ fulfills the condition (*);
(3) each functions ¢, vanishes only at zero;

(4) there exists a sequence (a,)<[0,1] such that o¢,(a,)+
0. (a,,)=1 for all n#£m and each @, is strictly convex on the interval
[0, a,], respectively;

(5) the function ¢ is uniformly convex in the d-neighbourhood of zero,
where d= (1 —inf, ¢ ,(a,)) v 1.

Proof.  Sufficiency. Let I,(x)=I1,(y)=1, I,(x—y)=ze for some
e€(0,1), where x=(u,), y=(v,) and u,, v, are nonnegative. Infimum
expressing the number o 1is not necessarily attained. Denoting
a=inf, ¢,(a,) let @, be any Young function strictly convex on [0, ;! («)]
and linear on [¢, ' («), 1]. We can isometrically imbed the space /,, into /5,
where @ =(¢,)*,- So, in the sequel we assume that the infimum is
attained and inf, ¢,(a,) = @ (a,). Note that the function ¢, is strictly con-
vex on [0, ¢ (1 —d)]. In particular, if d=1 then ¢, is linear on some
neighbourhood of zero. There exist at most two indices m, k such that
@ lu,)>d and ¢,(v,)>d First we shall estimate the expression
I,({(x+y)/2) in the following two situations.

(A) There exist jeN, pe(0,1), be (0, 1) such that 4, (u,v,)<1—p
and @ (w; v v} =b.
(B} There exist constants 0 >0, ce (0, 4] and a subset Ny of N such

that ¢,(u, v v,)<c for ne Ny, Xy 0,.(lu,—v,)=0 and @, are strictly
convex on the inverse image of [0, ¢], respectively, for ne N,.

ad. (A) If ,(u,, v,)<1—p and @,(u; v v,)> b then
I, ((x+y)/2) < 1= (p/2)(@;(u;) + @;(v;)) < 1 — pb/2. (1.1
ad. (B) Let
E={neNo: u,—v,| >(6/8)(u, v v,)and u, v v,€(c,, ¢, ' (c)1},

where (c¢,,) is the sequence from Lemma 6 chosen for 4/8, ¢ instead of ¢, d.
So, by virtue of Remark 1.1 there exists p=p(d, c)e (0, 1) such that
h,(u,,v,) <1~ p for ne E. Hence immediately

1, ((x+y)2) <1 = (p/2)U , (xx ) + L, (¥ £))> (12)

because I, (x) =1, () = 1. However, @, (lu, — 0,0} < (8/8)(@, (,) + 0, (0,))
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or @, (|u,—v,) <, (2, v 1v,))<@,(2c,) for ne N\E. S0, ¥,z @,
(Ju,—val) < (0/8)(J,(x) +1,(¥)+ 2521 9,(2¢,) < 6/4+6/8<6/2. Then
2k @nllu,—v,])>6/2, by the assumption 3y, ¢,(|lu,—v,|) >J. Applying
the condition &, with the constant k£ and the sequence (¢,) from Lemma 6
we get

52<Y @n(lun— o) < (k/2><z 9aln) Y, wn(vn)) 1Y 0n(26,)
<2, (x1e) + 1, (7)) + 518,

Hence 1, (xyz)+1,(yyz) > 30/4k, which in connection with (1.2) gives the
estimation

1, ((x+y)2)<1—3ps/8k. (1.3)

Further we shall show that the estimation of 7, ((x + y)/2} is always of the
type (A) or (B). We shall consider two main cases.

(I) Let o¢,(u,)<d and o¢,(v,)<d for all neN, n#l. If
¢,(Ju; —v,]) <e&/2 then we have (B) with 6 =¢/2, c=d and No=N\{1}. If
@1(Jlu; —v,]) = ¢/2, then by convexity of ¢, we have |@,(u,)— ¢, (v;)| =&/2
and |3, ;@) = %1 220 = 11— @, () — 1+ 0, (2,)] > /2. Apply-
ing Proposition 10 with ¢/2 instead of ¢ we will find J >0 dependent only
on ¢ such that 3, ¢,(lu,—v,/)>d. So, we also get the case (B) with
c=dand No=N\{1}.

If the case (I) does not hold then we can write, without loss of generality,
the following.

(IT) There exists an index k # 1 such that ¢, (v,) > d. It is evident that
we can put d< 1. In the sequel let i be a natural number such that i > 2 and
g2i<l—d.

—Let @g(u)<d—¢/2. We shall find pe(0,1) such that
hy (1, v,)<1—p, by Lemma 7 applied to d—¢/2', d in place of a, f. So, it
is the case (A) with j=k, b=d.

—Let @, (u,)>d—¢/2" and ¢,(u,)<1—d for each n+#k. We shall
show that 3 . ¢,(lu,—v,|)>6 for some J=405(e). Indeed, if
Pi(lue—vel) =e/2 then o (ur) — @r(ve)l = @ (lue —vi]) 2 6/2. Hence

120k @n(tn) =20 2k @0 (00)] = @r (i) — @ (v,)] > &/2. Therefore, we find
a suitable & by Proposition 10. So, we get the situation (B) for c=1—4d,

No=N\{k}.
—Let @, (u,)>d—¢/2" and ¢,,(u,,) =1 —d for some m#k. Then

d—e2i<g.(u)<d and 1—d<e,(u,)<(l—d) +e2. (1.4)
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Moreover, we have ¢, (v,)>d and ¢,,(v,,) <1 —4d, by the assumption (IT}.
If

0, (v,)>d+¢/2 or Qml(v,,)<(1—d)—¢/2", (1.5)

then applying Lemma 7 with d, d—¢/2" or (1 —d)—¢/2', 1 —d in place of
«, B, we find pe (0, 1) such that h;(u;, v;) <1—p for j=k or j=m. This is
the case (A) with b=d or b=1—d. Contrary to (1.5}, we have

d<@i(ve)<d+¢2" and (1—-d)—¢/2'< @, (v,,)<1—d.  (16)

Then ¢, (Ju;—v,|)<|o(u;) — @;(v,)| <d+¢/2'~d+¢/2"=¢/2" " for j=k, m
by (14) and (1.6). Hence X, .., @.(lu,—v,)=e—0,(lu,—v,l)—
o (lup—v )= (1—1/2"% e Putting 6=(1-1/2"%e, c=1—4d
No=N\{m, k} we have the situation (B).

In all the cases considered we obtained the estimation of I, ({x+ »)/2)
expressed by inequalities (1.1) and (1.3), where constants p, b, 6, k are
dependent only on ¢ and the function ¢. So we showed uniform rotundity
of /,, by Proposition 11 and Lemma 12.

Necessity. The conditions (1)-(4) are satisfied, by Proposition 11 and
Theorem 0.2. To prove (5), let us note that uniform convexity of ¢ in the d-
neighbourhood of zero is equivalent to the following condition.

For every aec(0,1) there exists d¢e(0,1) such that
Z;O=1 (pn(un(éa a))<@, were un(5’ a):sup{ue[(), (p;l(d)]
h,(u, au)>1—35}. (1.7)

Assuming that (5) is not satisfied we get

[ee)

2 Onlthyy) =0 (1.8)

n=1

for each keN, where u,,=u,(5;,a)e[0, 7 1(d)], a is some constant
from the interval (0, 1) and (6,) is a sequence included in (0,1) such that
8, 1 0. By definition of the sequence (u,(d, a)), the inequality

hn(”nk’ aunk)zl—ék (19}

holds, for each n,k e N. In the sequel we shall consider two cases.

(I) There exists be (0, d) such that lim, ,  sup,.,, ®.(u,.)>b for
each meN. Hence, one can find increasing subsequences (n,), (k;) of N
such that ¢, (1, )€ (b, d] for each je N. For simplicity, we put j and v; in
place of n; and u,,,. So ¢,(v;) € (b, d] for each je N.

Assume for the moment that ¢;(v;) <3 except for at most a finite number
of indices. Without loss of generality, we put ¢,(v;) <3 for every je N. We



318 ANNA KAMINSKA

can also choose a monotone infinite subsequence of (¢;(v;)— @;(av;)).
Therefore we can suppose, e.g., this whole sequence to be nondecreasing,
ie, @;(v)+o;i(av; 1)< 1(v;4,)+@;(av)). Then there exists
a;€ [a, 1) such that

(ij(UZj) TP (aj02j+ )= Dojr1 (Uzj+ 1)+ (p2j(a02j)’ (1.10)
for every je N. The expressions from both sides of the above equality are
less than one, because @;(v;) + ¢;(av;) <1 for each i, je N. Therefore

@2(V27) + @21 1 (a;02; 1)+ @1 (c;) =1 (1.11)
for some ¢;> 0. Let
X;=Ug€y+ iUy 4 1€954 1 T C5€4
Y= avyesit Uy, €95+ ClE5.
We have [,(x;)=1,(y;))=1, by (1.10) and (1.11). Moreover,
I,((x;—y,)/ (1 —a)) = @y(vy)>b for each jeN. Then I,(x;—y;)>c for
some ¢>0 and each jeN, by the condition J,. By virtue of (1.9) and
definition of (v)), h;(v;, av;) = 1 — 9, Therefore and by the second property
of h; considered in Lemma0.3 hy, ((vyi1, @y 1) hyy1(vy. 1,
avy; 1) =1—08,,,, is satisfied. Hence
I, ((x;+9,)/2) 2 (1= 04, )(9(v5)) + @55(avy)))/2
+ (L =04y, N4 1 (0374 1)+ @251 1(@;02511))/2
+ (pl(cj) 2 1 _-5162}-—) ls
when j— oo, by monotone convergence of (§,) to zero and (1.10) and
(L.11).

Now let ¢;(v;) >} for an infinite number of indices. For simplicity we put
¢,;(v;) >3 for every jeN. However, ¢;(v;)<d, so d>3 Then, by (5),
inf, ¢,(a,) <3 It implies, by virtue of (4), that the infimum must be
attained. So, we can put inf, ¢,(a,)=¢,{a;) and d=1—¢,(a;). The
function ¢, is linear on some interval [a,, @, ]. Let b, € (a,, d,) be such
that @,(b;)—¢,(a,)<(1 —a)b. Hence

@ ((a;+b1)2)=(p(a)) +¢,(b)/2 (1.12)
@;(av;) + @, (b)) < 9;(v)) + @ (a,)

holds for each jeN immediately, because (1—a)b<(1-—-a)o;(v;)<
@,;(v;)— @,(av;), by convexity of ¢,. So, there exist a;€ [a, 1) such that

0;(a0) + @1 (b)) = @;(v;) + @1 (ay). (1.13)
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Moreover, we find ¢; >0 such that

@ (v)+ @ (a)+o(c)=1, (1.14)
because ¢, (v;)+ @ (a;) <d+ ¢ (a;)< 1. Let
X;=aye +ce,+v;e;
yi=bie +ciert+ause;
We have I,(x;)=1,(y)=1, I,(x;—y)=@(b;—a,)>0 for each j=3.

¢
However, A, (13 v; )>h (v, uj)> —d,,, by the property of 4; and (1.9),
and so

I(p((xj+yj)/2) Z@(a)2+¢(b;)2+ 992((7,')
+(1— 5k,)(€9j(vj) + (Pj(ajvj))/z
1— (5k/2)(§0j(vj) -+ @,‘(ajuj))

=
21-6, -1,

when j— o0, by (1.12), (1.13), and (1.14).

(I} Contrary to (I), for every be (0, d) there exists me N such that
limg , ., sup, >, ¢,(u,)<b. Hence we find subsequences (m,), (k;) of N
such that (k;) is increasing and

@ (thy) <1/27! (1.15)
for each je N, n>m;. Moreover, it is known that

o0

S ouu) =0, 3 olauy)=o, (1.16)

n=1 n=1

by (1.8} and the condition 6,. We shall show that for each je N there exist
two disjoint subsets Ny;, N,; of N such that

1 - 1/2j— ! < Z (pn(unkj) + Z (pn(aunkj) < 1 - 1/2j5 (117)

Ny Ny

Z (q)n (unkj) — @, (aunkj))

Ny

- Z ((pn(unkj) - (pn(aunkj)) < 1/2j+ 19

Noj

(1.18)

putting X" =0. Indeed, let j be fixed at present. We put m;e N ;. We have

Pn (unk,') —Pu (aunkj) < 1/2j+ 1,

640/47/4-5
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for all n>m;, by (1.15). If the sum of the left side of the above inequality
for n=m; and n=m;+1 is less than or equal to 1/2/*' then we put
m;+1eN,;. If this sum is greater than 1/2*' then we put m,+1€N,,.
We have always l((pm/(umjkj) - qomj(aumjkj)) - ((pmj+ 1 (umj+ 1 kj) - (ij—{- 1
(@ ) < 1/2ZHL TS additionally,

1 - 1/2]_1 < (ij(umjkj) + (pMj+l (aumj’+ 1 kj) < - 1/2]’

then we put N,;= {m;} and N, = {m;+1}. In the opposite case we con-
tinue this process finding sets N,;, N in a finite number of steps, because
(1.15) and (1.16) hold. Let

xj = Z unkjen + Z aunkjen
Ny; Noj

Y=Y AU, + Y Uyl

Nyj Noj

We have I,(x;)<1 and I,(y;)<1, by (1.17) and (.18). Moreover,

I, ((x;—y,)/(1—a)) =2N1ju1vz,- Q’n(unkj) >3, by (1.17), and so I, (x;—y)=zc
for some ¢ >0 and all je N. However,

L((+y)2)= % @ul(tt+au,)/2)

Niju Nyj

2(1-0) Y (@u(u) + @u(auy))2.
Nyjo Ny
The right side of the inequality tends to 1, by (1.9), (1.17), and (1.18). We
have shown that if ¢ does not satisfy the condition (5) then the modular /,,
is not uniformly rotund, in all the cases considered above. Then, by
Proposition 11 and Remark 1.2, the necessity of the condition (5) is shown,
which ends the proof.

In particular, if all ¢, are equal, the known criterion of uniform rotun-
dity of Orlicz sequence spaces (Theorem 7 in [7]) is easily obtained from
the above theorem.

Let (p,) be a sequence of real numbers p,e[1, ). By I({p,}) we
denote the Nakano space [127]. Then the space /({p,}) is the set of all real
sequences x = (u,,) such that > | (1/p,)|4u, | < oo for some A >0 depen-
dent on x. Indeed, /({p,}) is the Musielak-Orlicz sequence space [,
endowed with Luxemburg norm, if we put ¢, (¢)=(1/p,) v”, ue R, . This
space we can isometrically transform in such a way that ¢,(u)=u" if
ue[0,1], ¢, (u)=u if u>1, as we have shown at the beginning of this
paper. Sundaresan in [12] has given a sufficient condition and a slightly
weaker necessary condition for uniform rotundity of I({p,}). We shall
show that a criterion of uniform rotundity of /({ p,}) results from our main
theorem.
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2. THEOREM. The space I({p,}) is uniformly rotund if and only if

1< lim p,< Tim p,< oo and p,=1 for at most one index n. (2.1)

n - o n— 00

Proof.  Let us note ¢, (u) =u", ue [0, 1]. Suppose the condition (2.1) is
satisfied. There exist p and ¢ such that 1<p<g<oo and p,<gq for all
neN and p,=zp for almost all neN. If ¢,(u)=uv""<1—¢ then
u<(1—¢)" for e (0, 1). It is evident that (1+8)?(1 —¢)" <1 for some
0>0. Hence ¢,((1+6)u)=(1+6Pu»<(1+8)u<s(1+6)(1—e)" <1,
if ¢,(u)<1—¢ This shows that ¢ =(¢,) satisfies the condition (*). The
condition 9, is also satisfied, because ¢, (2u) <29% 1o, (4) for all ueR, . It
is enough to prove (5), because (3) and (4) are evident even though one of
P. is equal to 1. We have the inequalities (see (i,) and (i) in [7])

(1 +a)2) < (1+a7)2— ((1—a)/2)" ifp,22,
(1 +a)2y"<(1+a")2—(p,(p,—1)/2)
x((1=a)/(1+a))* (1L —a)2y~,  ifp,<2,

for any number a€ [0, 1). Hence it follows simply that

h, (4, au) <1 —((1—a)/2)4(1 +a)/2 forp, =2,
ha(u, au) <1—(p(p—1)2)(1 = a)/(1 +a))* 7
x ((1-a)/2)%2/(1 4+ a*) forp<p,<2,uel0,1]

Therefore the condition (5) is fulfilled with d=1 and (¢,)=(1,0,..),
putting p, =1.

Let the space /({p,}) be uniformly rotund. Then the conditions of the
previous theorem must be fulfilled. The existence of », at most one, for
which p, =1, follows easily from (4). Suppose Iim, , , p,= oc. For sim-
licity we write lim,, , , p,=c0. If u,=%/1—¢ then u,—1 when n— co.
This contradicts the condition (*). Now, suppose lim,, , . p,= 1. There is

an infinite decreasing sequence (p,) such that p, >1 and lim =1
Then

i—>oopn,-

By (u, au) = ((1 + a)/2)P(2/(1 + aP)) - 1,

ifi— o0, forallue [0, 1] and ae [0, 1). Therefore the condition {5) cannot
be fulfilled. This completes the proof.

Finally let us note that the case of atomless measure was considered in
[8] for Orlicz spaces and in [5] for Musielak—Orlicz spaces.
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