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We present a criterion for uniform rotundity of Musielak-Orlicz sequence spaces.
In particular, we get a better characterization of uniform rotundity of Banach
spaces l( {Pi}), called Nakano spaces, considered by K. Sundaresan (Studia
Math. 39 (1971), 227-331. © 1986 Academic Press, Inc.

INTRODUCTION

Geometrical properties of Banach spaces play an important role in the
theory of approximation and optimization. The property of uniform rotun­
dity ensures, for example, the existence and unicity of nearest points in best
approximation problems. Moreover, uniformly rotund Banach spaces are
E-spaces where "all convex norm-minimization problems are 'strongly
solvable' and all convex best approximation problems are 'well posed' in
the sense of Hadamard" [4]. Among the many papers concerning
approximation problems, some, e.g., [3, 10], deal with best approximation
in Orlicz spaces. It is important there to know how rotundity of Orlicz
space is expressed in terms of Young functions. So it seems worthwhile to
look for criteria for the validity of various geometrical properties in spaces
of Orlicz type.

We know a criterion for uniform rotundity of Orlicz sequence space [8J
and a sufficient condition and a little weaker necessary one for this
property in Nakano space [12]. The Nakano spaces, like the Orlicz spaces,
are particular cases of more general Musielak-Orlicz spaces. Here we will
find necessary and sufficient conditions stated in terms of Young functions
for uniform rotundity of such spaces. In particular, we get a criterion for
the validity of this property in Nakano spaces.

Now we introduce the basic notations and definitions. In the following,
let IR be the real line, IR + = [0, + 00) and N the set of natural numbers.
For arbitrary a, bE IR, we write min(a, b) = a /\ b, max(a, b) = a v b. Let
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rp = (rpn)' where rpn are Young functions, i.e., rpn: IR + -> IR + are convex and
rpn (0) = 0 for all n EN. Let rp; 1: IR + -> IR + be the generalized inverse
function, i.e., rp;l(v)=inf{u~O: rpn(u»v}. The Musielak-Orlicz space lqJ
is the set of all real sequences x = (un) such that

co

IqJ(h)= L rpn{}olunl) = L rpn{)olunl) = L rpn(},lunl) < 00
n = 1 N n

for some A> 0 dependent on x. If all functions rpn are identical then 1'1'
becomes an usual Orlicz space. Here, lqJ is endowed with Luxemburg norm,
i.e., Ilxll = inf{ e > 0: IqJ (x/e) ~ 1} (for details of Musielak-Orlicz spaces see
[11]). Let us define a new function tjI = (tjIn) as follows,

=U

ifO~u~1

ifu> 1,

where rpn(bn) = 1. The spaces I", and l>jt are isometrically equal. Indeed, let
T: lqJ -> l>jt be such that Tx = y, where y = (un/bn) for x = (un)' If e > 0 is such
that l<fr(y/e) ~ 1 (which is equivalent to IqJ(x/e) ~ 1) then lun/bnel ~ land
so I<fr(y/e) = L::= 1 tjln(lun/bnel) =2::=1 rpn(lun/el) = IqJ{xle). It means that
II yll <fr = Ilxll'l" where II II>/t (II II qJ) denotes the Luxemburg norm in 1>/t(lqJ)'

Henceforth, by virtue of the above considerations, we assume that
rpn(l)=1, M=suPn rpn(2)<00, and rpn are convex on the interval [0,1J
and are nondecreasing on IR +. However, we must remember that rpn may
be not convex on the whole set IR +. Now, define a few conditions concern­
ing the function rp.

It is said that rp satisfies the condition 62 [7J if there exist constants
k, 6> 0 and a nonnegative sequence (c n ) E 11 such that

(0.1 )

for each n E Nand u E IR + when rpn (u) ~ 6. It is not difficult to show that
under additional assumptions made on rp, the condition 62 is fulfilled iff
there exists a nonnegative sequence (Cn ) Ell such that the inequality (0.1) is
fulfilled for each n E N and all u E (0, 1). Indeed, if 6 < rp n (u) ~ 1 then
rpn (2u) ~ M = (M/6) b~ (M/6) rpn (u). Thus q>n (2u) ~ (k v M/6) q>n(u) + Cn

for all u ~ 1. We also note that q> satisfies the condition 62 iff there are a
constant k and a nonnegative sequence (c n ) such that

and (0.2)

for u E [en, 1], n EN. If, in addition, each (j)n vanishes only at zero, then,
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for each I> > 0, a sequence (cn ) and a constant k in (0.2) may be chosen in
such a way that

(0.3)

We say that CfJ satisfies the condition (*) if for each I>E (0.1) there exists
D>°such that CfJn (u) < 1- I> implies CfJn ((1+ D) u) ~ 1for all U E IR +' n E N.

Let us introduce a function h: IR + x IR + -+ [0, + (0) in the following way,

h(u, v) = 2$((u+ v)/2)/($(u) + $(v))

=0

if $(u) v $(v»O

if $(u) v $(v)=O

for an arbitrary Young function $. If, in particular, $ is equal to CfJn then
we will denote the function h by hn-

Let d be positive number. It is said that CfJ is uniformly convex in the d­
neighbourhood of zero if for each a E [0, 1) there exist DE (0, 1) and a non­
negative sequence (dn) such that CfJn(dn)~d and

and

for u E (dn, CfJ';- 1 (d)], n EN. Recall that a Young function $ is strictly con­
vex on an interval [a, b] if $( (u + v)/2) < ($(u) + $(v) )/2 for every
u, v E [a, b], u #- v. A Banach space (X, II II) is said to be uniformly rotund
[2] if for each 1»0 there exists D(I»>O such that if Ilxll = 1, IIYII = 1, and
Ilx-yll~1> then II(x+y)/211~1-D(I» (equivalently we can put Ilxll~1,

Ilyll ~ 1 instead of Ilxll = 1, Ilyll = 1). Similarly, it is said that the modular
I cp is uniformly rotund if for every I> > °there exists D( 1» >°such that if
Icp(x) = 1, Icp(y)=1, and Icp(x-Y)~I> then Icp((x+y)/2)~1-D(I».

We give the following known results, needed in the sequel, for com­
pleteness.

0.1. THEOREM. (a) [6] The norm and modular convergence are equivalent
in lcp, i.e., Ilxllcp-+O-=Icp(Ax)-+Ofor some A>O, iff the function CfJ satisfies
the condition D2 and each CfJn vanishes only at zero.

(b) [7] We have an equivalence Ilx II = 1-= I cp (x) = 1 iff the function CfJ
satisfies the condition 62 ,

0.2. THEOREM [7]. The space lcp is rotund iff the following conditions are
satisfied:

-the function CfJ fulfills the condition ()2'

-there exists a sequence (an) such that an E [0, 1],
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<Pn (an) + <Pm (am) ~ 1 for n #- m and each <Pn is strictly convex on [0, an],

-each function <Pn vanishes only at zero.

0.3. LEMMA [9]. The function h has the following properties:

(1) h(u, v) = h(v, u),

(2) a function u ---+ h(u, v) is nondecreasing on an interval [0, v] for
each v E IR +.

0.4. LEMMA [9]. If rp is a strictly convex Young function on an interval
[0, a] then for every e > 0, d 1 , d2 E (0, a], d 1 < d2 , there eXtsts
p = p(e, d j , d2 ) E (0, 1) such that

h(u,v)~l-p

if lu- vi ~e(u v v) and u v VE [dll d2 ].

RESULTS

1. LEMMA. If<p satisfies the condition (*) then there exists roE(O, 1)
such that infn <pn(ro) = M o> 0.

Proof Suppose, to the contrary, infn<pn(r)=O for every rE(O, 1). Then
there exists m n EN such that <PmJl - lin) < 1/2 for every n EN. Hence, by
the condition (*), we have

<Pm.((l +b)(1-1In)),,; 1 (1.1 )

for all n E N and some bE (0, 1). But (1 + b)(1 - lin) > 1 for sufficiently
large n, i.e., <p;((1 +J)(l-l/n»> 1 for every i, which contradicts (1.1).

2. LEMMA. If q; satisfies the conditions (*) and b2 and each rpn vanishes
only at zero then infn I n(r) >°for every r E (0, 1).

Proof We have Mo=infn<pn(ro»O for some roE(O, 1), by the
previous lemma. But

by the conditionb2 . We can choose n j such that infn>nj(Mo-cn»O,
because Cn ---+ O. Putting

M j = inf (llk)(Mo-cn) /\ inf rpn(ro/2)
n>nl 1~n~nl
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we have infnlpn(ro/2)~Ml>0. Similarly it can be shown that
infn lpn (ro/2 i

) >°for each natural number i. By virtue of monotonicity of
lpn this ends the proof.

3. LEMMA. If lp satisfies the condition 62 then the family {lpn} is equicon­
tinuous on the interval [0, 1]: i.e., for every e>°there exists 6 >°such that
lu- vi < 6 implies Ilpn(u) -lpn(v)1 < efor all u, v E [0,1], n EN.

Proof For a contrary there exists 8>0, sequences (Urn), (vrn)c [0,1]
and a subsequence (n rn ) of natural numbers such that

and (3.1 )

for every mEN. Since the functions lpn are uniformly continuous on [0, 1]
we can assume without loss of generality that nl < n2 < .... Sequences
(urn), (v rn ) must possess accumulation points. Let us note that the
accumulation points of (urn) and vrn) are equal: this results simply from
(3.1 ).

First, let the number 1 be a point of accumulation of (urn) and (v rn ).
Assume for simplicity that Urn ---+ 1 and Vrn ---+ 1 and

(3.2)

for all mEN. Then lpnm(vrn)~lpnm(urn)-e~1-e,by (3.1). Hence and by
the assumed condition (*) we have lpnJ(1 + 6) Vrn) ~ 1 for each mEN and
some 6> 0. So (1 + 6) Vrn ~ 1 for every mEN, which contradicts Vrn ~ 1.

Now, let °be a point of accumulation of (urn) and (v rn ). Suppose Urn ---+ 0,
vrn---+O, and the inequality (3.2) holds. Also, let us note that lpn(u)~u

for all U E [0, 1]. Therefore and by virtue of (3.1) we have
e< e + lpnJvrn )< lpnJurn )~ Urn for every mEN, which contradicts Urn ---+ 0.

Finally, let s E (0,1) be a point of accumulation of (urn) and (v rn ). Taking
a E (0, S /\ (1 - s)) we have

(lpn(s+ a) -lpn(s))/a ~ (1-lpn(s))/(1-s),

(lp n(s) - lp n(s - a))/a ~ (1 - lp n(s - a))/(1 - (s - a)),

by convexity of lpn' Hence

lp n(s + a) ~ lpn(s) + a/(1 - s),

lpn (s) < lpn (s - a) + a/(1 - s),
(3.3 )

for each n EN. However, Urn' Vrn E [s - a, s + aJ for infinitely many indices.
Therefore
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for infinitely many indices m and ex E (0, S !\ (1 - s)), by (3.3) and the
monotonicity of lfJ n' Taking a < c( 1 - s )/2 we get a contradiction with (3.1).

4. LEMMA. The function lfJ is uniformly convex in the d-neighbourhood of
zero iff for each c E (0, 1) there exist p E (0, 1) and a nonnegative sequence
(dn) such that lfJn(dn)~d, L:~l lfJn(dn) < 00, and

hn(u,v)~1-p

iflu-vl ?:c(u v v) and u v vE(dn, lfJ;l(d)J, nEi\L

Prool Let (dn) and 15 be a sequence and a constant from the defihition
of uniform convexity of lfJ, chosen for a = 1 - c. Let u, v satisfy the
assumptions of the lemma and let u > v. Then u E (dn, lfJ; 1 (d)] and
(l-e)U?:V. Hence hn(u,v)~hn(u,(1-c)u),by the property (2) of hn in
Lemma 0.3. Thus, we have hn(u, v) ~ 1-p, by uniform convexity of lfJ,
putting p = /5. The converse is immediate if we apply the inequality
hn(u, v) ~ 1-p for c = I-a and v = au, where U E (dn, lfJ;l (d)], aE [0,1).

5. LEMMA. If lfJ l~' uniformly convex in the d-neighbourhood of zero and
each lfJn is strictly convex on the interval [0, lfJ; 1 (d)], respectively, then for
every c E (0, 1) there exists pE (0, 1) and a nonnegative sequence (an) with
L:=! lfJn(an) < e and such that the previous lemma holds with p and (an)
instead of p and (dn).

Prool We can assume that c < d. Let (dn) and p be as in the previous
lemma. We have L~no+l fPn(dn) < e/2 for somenvEN. Let an be positive
numbers such that L~o=! lfJn(an) <c/2. Since lfJn are strictly convex on
[O,lfJ;l(d)], so hn(u,v)~1-Pn for somepnE(O,l) if lu-v\?:e(uv v )
and U v v E (an, lfJ;! (d)] for n = 1,..., no, by Lemma 0.4. Putting

if n=no+ 1, no+2,...

if n = 1,..., no,

andp=p! v P2 v
P and (dn )·

V Pno V p, Lemma 4 holds with p and (an) in place of

6. LEMMA. If lfJ is uniformly convex in the d-neighbourhood of zero, qJ
satisfies the condition 15 2 and each lfJn is strictly convex on the interval
[0, lfJ; 1 (d)J, respectively, then for every e E (0, 1) there exist k > 0, P E (0, 1)
and a nonnegative sequence (cn) such that L;:'=1 qJn(2cn)<s and
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if IU - vI ;> 8(U V v) and U v v E (cn, cP; 1(d)], n E 1\1.

Proof Functions CPn are strictly convex on some neighbourhood of
zero, so they vanish only at zero. Hence and by the supposed condition b2

(see also (0.3)) it follows the existence of a sequence (c~) and a constant
k>O such that CPn(2u)~kcpn(u)for UE [c~, 1], where L n'::l CPn(2C~)<8/2.

Moreover, we have L;;"= 1 CPn (2dn)< 00 for a sequence (dn) from the
previous lemma, by the condition b2 • Acting in a manner similar to that in
the preceding proof, we modify (dn) in such a way that L;;"= 1 CPn (2dn)< 8/2.
Putting Cn = c~ v dn we end the proof of the lemma.

7. LEMMA. If cP is uniformly convex in the d-neighbourhood of zero and
satisfies conditions b2 and (*), and each CPn is strictly convex on [0, cp;1 (d)],
then for arbitrary IX, [3 E [0, 1] satisfying the inequality °~ IX < Y= [3 1\ d
there exists p E (0, 1) such that

for every n E 1\1, u, VE IR + if°~ U ~ cP; 1 (IX) and cP; 1 (y )~ v ~ 1.

Proof Let CPn(Un) = IX, CPn(vn)=y. Since CPn(vn)-CPn(Un)=Y-IX>O,
there exists bo E (0, IX) such that V n - Un > bo for every n E 1\1, by Lemma 3.
Hence Vn- un;> bovn, because VnE (0, 1]. Applying Lemma 5 with bo in
place of 8 we find a nonnegative sequence (dn ) and a constant q E (0, 1)
such that L;;"= 1 CPn (dn)~ bo< IX < Yand

(7.1 )

for each nE 1\1, because vn-un;>bovn and CPn(un) v CPn(Vn) =
YE (CPn (dn), d]. Let v E [cp; 1 (y), 1]. We have the inequalities

CPn(v) - CPn((un+ vn)/2)
CPn((un+v)/2)~ ( )/2 ((un+v)/2-v)+CPn(v),

v- un+vn

( () ))/2 CPn(v) - (CPn(un)+ CPn(vn))/2 (()/ )
CPn Un +CPn(V;> ()/2 un+V 2-v)+CPn(V'v- un+vn

by the convexity of CPn- Hence and by (7.1) we get

for each nEI\I, where an=cpn(v)(v-vn)/(v-un)E(0,1). Since the function
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U'-+ (u+bd/(u+b 2 ), b i <b2 , is increasing for UE [0, 1J, so
hn(un, v) ~ 1-p, where p = (q(o: + y)/2)j(1 +(0: + y)/2). Hence and by the
second property of hn we obtain

for all nE 1\1, if qJn(u)~o: and y~qJn(v)~1, which ends the proof.

1.1. Remark. (1) It is not difficult to show that uniform convexity of qJ

in the d-neighbourhood of zero implies this in the c-neighbourhood of zero
for c E (0, d].

(2) Let N be a subset of 1\1. We say that a family (qJn)nEN is uniformly
convex in the d-neighbourhood of zero, if the functionij; = (If;n) has this
property, where l/In = qJn for n E Nand l/In = 0 for n 1= N. In Lemmas 4-7 we
can replace the function qJ by a family (qJn)nEN' obtaining the statements of
the lemmas not for an n E 1\1 but only for n E N.

8. LEMMA. Let (X, II II) be a normed space. If f: X.-+ IR is a convex
function in the set K(O, 1)= {XEX: IIxll ~ I} and If(x)1 ~M for all
x E K(O, 1) and some M> 0 then f is almost uniformly continuous in K(O, 1);
i.e., for all dE (0, 1) and e > ° there exists 6> 0 such that II yll ~ d and
Ilx~yll <6 implies If(x)-f(y)1 <efor all x,yEK(O, 1).

Proof We can always suppose that M?:-1. Let gy(x)=flx +y)-f(y).
It is enough to show uniform continuity of this function at zero with
respect to y E K(O, d). Note that gy(O) =°and the function gy(x) is Convex
for such arguments x for which Ilx+ YII ~ 1. If Ilyll ~d and Ilxll ~ I-d
then Ilx+yll~l and so Igy(x)I~lf(x+Y)I+lf(Y)I~2M. Putting
6 = (1 - d) e/2M and taking y E K(O, d) and x E K(O, 6), we have

(8.1 )

because 112Mx/ell~1-d for xEK(0,6). Moreover O=gy(O)~

(1/(1 + e/2M)) gy(x) + ((e/2M)/(1 + e/2M)) gy( -2Mx/e), which implies

(8.2)

because 11- 2Mx/e II ~ 1 - d for x E K(O, 6). The inequalities (8.1) and (8.2)
end the proof.

9. LEMMA. If the condition 62 is fulfilled then the following conditions are
equivalent:

(1) the function qJ satisfies the condition (*),

(2) for every e E (0, 1) there exists 11 E (0, 1) such that the inequality
I'P{x)~l-e implies Ilxll~l-l1forxEI(p.
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Proof (1)=(2) Let SE(O, 1) be chosen arbitrarily and let x=(un) be
such that I",(x)~I-s. Then <fJn(lunl)~I-s for each nEN. Hence
<fJn((1 +<5)lunJ)~k<fJn(lunl)+cn, where k and (cn) are the constant and the
sequence from the condition bz. Therefore I", (( 1+ b) x) ~ P, with
P = k +L:~ 1 Cn < 00. Let us introduce a set A and a function
g: IR + ~ [0, + 00] in the following way,

A={xEI",:I",(x)~I-£},

g(A) = sup I",(Ax),
XEA

for AEIR+. The function g is convex, g(O)=O, g(I)~I-£, and
g(1 + b) ~ P < 00. Hence it is continuous on the interval [0, 1+ b]. Thus
there exists Ao E (1, 1+ b] such that g(Ao)~ 1, by the Darboux property. It
means that I", (AoX) ~ 1 for all x E A. Then, putting 1J = 1 - 1/Ao we have
Ilxll ~ 1 -1J for each x EA.

(2) = (1) For an arbitrary £ E(0, 1) and n E N, let us take U E IR + such
that <fJn(u) ~ 1- £. If we put x = uen then I",(x) = <fJn(u) ~ 1- s. So, there is
1JE(O, 1) such that Ilxll~I-1J. Hence simply I",(x/(I-1J))=
<fJn(u/( 1 -1J)) ~ 1. Putting <5 = 1J/(1 -1J) we get the condition (1).

10. PROPOSITION. The condition

for every £ > ° there exists b > °such that I", (x) ~ 1, I", (y) ~ 1
and I",(x-y)~b imply II",(x)-I",(Y)1 <£for x,YEI", (10.1)

holds if and only if the function <fJ fulfills the conditions (*) and bz and each
<fJn vanishes only at zero.

Proof Assume the condition (*) does not hold. Then there exist S > °
and sequences (b m)=(I/m), (nm), (um) such that <fJnJum)~I-s and
<fJ nm ((l + bm) um) > 1. Without loss of generality, we can take n 1 < nz< ....
Let

X m = umentn ,

where iXm E (0, bm) is such that <fJnJ(1 + iXm) um) = 1. We have I", (xm)< 1,
I",(Ym) = 1 and I",(xm-Ym)=<fJnJiXmum)~iXm(l-£)~(I/m)(I-£)~O,

when m~oo, because O<iXm<bm=l/m. However, II",(xm)-I",(Ym)l=
l<fJn

m
(um) - <fJnJ(1 + iXm) um)1 = 1 - <fJnm (um)?': dor each mEN, which means

that (10.1) is not fulfilled.
Now, suppose there exist i EN, Uo E (0, 1) such that <fJi(UO) = 0. Let us

take a number Uj E (1- Uo, 1) and a sequence (um) such that <fJi+ j (um)~°
when m ~ 00. Let
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Then I<p(xm) = 1, I<p(Ym) ~ 1 for sufficiently large m and I<p(xm- Ym) =
<pJ1 - ud + <Pi+ dUm) = <Pi+ j (Urn) ~ 0, m ~ 00. However, II<p (xm)­
(Ym)1 = 1 - <Pi(Uj) - <Pi+ dUm):;::: (1 - <pi(u j))/2 > 0 for large m, which means
that (10.1) does not hold.

If the condition (j2 is not fulfilled then there exists a sequence (xm)c l<p
such that I<p(xm)~O and Ilxmll ft 0, by TheoremO.l(a). We know that
Ilxmll ~O iff I<p(hm)~O for every 2>0 [11]. So, there is 2>1 such that
I<p(xm)~ 0 and l<p(hm) ft O. We can always find )" being arbitrarily close
to one. Then, let 2E(1,1/ro), where roE [1/2, 1) is such that
Mo=infn<pn(ro»O. The existence of such a number ro results from (*)
and Lemma 1. Suppose, without loss of generality, that I<p(xm)<Mo and
1<p (2xm ) :;::: s for each mEN and some S E (0, 1). Now we find subsets N m of
N such that

(10.2)

for each mEN. Indeed, since I<p(xm)<Mo, (,On(junml)<Mo for aU nEf\,J,
where X m= (u nm ). We have Iunml < ro for n EN, by the definition of Mo.
Hence <Pn(2Iunml)<(,On(2ro)~1. If there exists an index k such that
(,Ok(2Iukm l):;:::e/2 then we put Nm= {k}. If it is not true then
(,Ok(2Iukm l)+<p/(2Iu/ml)<2(e/2)<1 for each pair (k,/), kid. We put
Nm= {k, l} if <pd2Iukm J) + <p/(2Iu/ml):;::: 1'/2 for any pair (k, I). Continuing
this process we will find Nm satisfying (10.2), because I<p(Axm):;:::s. If we
take

we have I<p(Ym)~l, I<pCYm)~1, by (10.2). Moreover, I<p(Ym-Ym)=
1<p((2-1)xmXNJ~(A-l)I<p(xm)~0, m~oo, because 2-1~1.

However,I/<pCYm)-I<p(Ym)1 =I<p(hmxNJ-I<p(xmXNJ:;:::e/4 for large m,
because l<p(xm ) ~ 0 and the condition (10.2) holds. This shows again that
(10.1) cannot be fulfilled. In this way we have proved thenecessity of the
conditions (*), 15 2 and (,On (u) = 0 iff U= 0 for satisfying (10.1).

Now, suppose the function <P satisfies (*), 15 2 and each <Pn vanishes only
at zero. First, we will show the following:

for each dE (0, 1) and I' > 0 there exists 15 > 0 such that
l<p (x)~ 1, I<p (y) ~ d and I<p(x - y) < 15 imply II<p(x) - l<p (y)1 < I'

for x, Y E l<p' (10.3)

Indeed, by the assumed condition (*) and Lemma 9, II yll ~ dj for some
d j E(O,l). It is evident that Ilxll~1. Let (jj>O be the constant from
Lemma 8 chosen for sand d j in place of d. We find 15 > 0 such that
l<p(z)~(j implies Ilzll~(jj for zEl<p' by TheoremO.1. So, if 1<p(x)~l,

I<p(y)~d, and I<p(x-y)~(j then Ilxll~l, 1IY11~dj and Ilx-yll<(jl'

640/47/4-4
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Hence IIq>(x)-Iq>(Y)1 <I:: by Lemma 8, because 1'1' satisfies the assumptions
of jon X=lq>'

Further, let x=(un), y=(vn) and Iq>(x)~l, Iq>(Y)~1. We will
investigate a few cases.

First, let <Pm(luml» 1/2 and <Pm(lvml» 1/2 for some index m. Let 15'>0
from (10.3) be chosen for d =! and 1::/2. So, if Ln#m <Pn (I Un - vnl) < 15' then

(10.4)

because Ln,om<Pn(lunl)<! and Ln,om<Pn(vn)<!- Taking 15 0 >0 from
Lemma 3 chosen for 1::/2 we put b"=infn<pn(bo). We have 15">0, by our
assumptions and Lemma 2. Moreover, if <Pn(lu-vl)<b" then Iu-vi <150

and hence

(10.5)

for all nEI"'J. Let us put b=min(b', 15"). If Iq>(x-y)<b then
Ln,om<Pn(lun-vnl)<b' and <Pm(lum-vml)<b". Hence and by (10.4) and
(10.5) we get IIq>(x)-Iq>(y)1 <I::.

Now, let <Pm(luml) >! and <Pk(lvkl) >! for some indices m, k, m i=k. Let
15 from (10.3) be chosen for d=! and 1::/3. Since Ln,om,k<Pn(lvnl)<!,
<Pm(lvml)<!, <pdlukl)<!, so

11'1' (x) - 1'1' (y)1 ~ Inf'k <Pn (Iunl) - nf,k <Pn ('Vn')1

+ l<pdlvkl) - <pdlukl)1

+ l<Pm(luml) - <Pm(lvml)l,

if Iq>(x-y)<b, by (10.3).
Finally, let <Pn(lunl) ~! for all n EN. Since 1'1' (x) ~ 1 so we find subsets

N1,Nz of N such that N=N1uNz, N1nNz=0 and Iq>(XXNl)~! and
1'1' (XXN2) ~ *. If we take 15 from (10.3) for d = *and 1::/2 then we have

11'1' (x) - Iq>(y)1 ~ 1'1' (XXNJ - 1'1' (YXNJI

+ IIq>(xxNJ-Iq>(YXN2)! <I::

for x, Y satisfying 1'1' (x - y) < b.
In all cases considered the number 15 is dependent only on 8 and the

function <po This remark ends the proof.

11. PROPOSITION. The space 1'1' is uniformly rotund if and only if the
following conditions are satisfied:
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(1) the function ({J satisfies the condition <5 2,

(2) the function ({J satisfies the condition (*),

(3) each function ({In vanishes only at zero,

(4) the modular I <p is uniformly rotund.

Proof Let the space l<p be uniformly rotund. Then lcp is rotund and
hence the function ({J satisfies the conditions (1) and (3) (see Theorem 0.2).

Now, assume (2) is not satisfied. Then there exists a constant eE(O, 1)
and sequences (an); (mn)eN, (un) c (0, + (0) such that 0< bn to, ml <
m2< "', ({Jm)un) < e and ({Jm)(l + bn) un) > 1. Put mn= n, without loss of
generality. Let In be positive numbers such that ({In(lnun) = 1. Since
In E (1,1 + 6n) and Ilunenil = 1;;1, so

(11.1 )

when n -> 00, Let us take Yn E (0, + 00) in such a way that
({In(Yn un)=(1+e)/2. Then Yn->l, because YnE(l,l+bn). Let un=Ynum
wn=2un- Un- Moreover, let Sn E (0, (0) be such that ({In (sn) = (1- e)/2.
Putting

we have

I <p (xn)= ({J2n (U2n) + ({J2n + dS2n + 1) = (1 + e)/2 + (1 - e)/2 = 1,

l<p (Yn) = ({J2n (2un- un) = ({J2n ((2 - Yn) un) < 1,

for all neN, because 2-Yn<1. Moreover, 1<p(xn-Yn)=({J2n
(lu 2n - w2n l) + tp2n + d S2n+ d): (1- e)/2 for all n EN. But (xn+Yn)/2 =
u2ne2n+(s2n+l/2)e2n+l):u2ne2n, which implies II(xn+Yn)/211):
Ilu 2n e2n ll-> 1, by the monotonicity of the norm and (11.1). This contradicts
the uniform rotundity of l<p.

Now, let l<p(x) = 1, IIp(Y) = 1, and l<p(x-y)):e. Hence and by the well­
known properties of the Luxemburg norm we have Ilxll = 1,llyll = 1, and
Ilx-yll):e1(e) for some e1 (e»0. Then II(x+y)/211~1-p(e) for some
p(e) E (0, 1). However, I <p ((x + y )/2) ~ II (x +y)/211, which shows the
uniform rotundity of the modular lip' i.e., the condition (4).

Supposing the conditions (1)-(4), let us take x,yEI,p such that Ilxll = 1,
II yll = 1, and Ilx - yll ): e. There exists ede) > °such that l<p (x - y)): ede),
by (1),(3), and Theorem 0.1. We also have lip (x) = 1 and 1<p(Y) = 1, by
Theorem 0.1 (b ). So, there exists PI (e) E (0, 1) such that
l<p((x + y)/2) ~ 1-PI (e), by the assumption (4). Now, by virtue of (2) and
Lemma 9 we find p(e) e (0, 1) satisfying II (x +Y)/211 ~ 1 - p(e), which ends
the proof of this theorem.
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1.2. Remark. Equivalently, under assumptions (1)-(3) of the above
proposition we can put 1'1' (x) ::::; 1, 1q>(Y)::::; 1 instead of 1'1' (x) = 1, 1q>(Y) = 1
in the definition of uniform rotundity of the modular I'll' It can be shown
by the same technique as that in the above proof.

12. LEMMA. If CfJ satisfies the condition b2 and all CfJn vanish only at zero
then the modular 1'1' is uniformly rotund iff

for each s >°there exists b(s) >°such that if I'll (x) = I'll (y) = 1,
where x = (un), Y = (vn) are arbitrary with Un ~ 0, Vn~ 0, and
Iq>(x-y)~s, then 1q>((x+y)/2)::::;I-(i(s). (12.1)

Proof Let us suppose the condition (12.1) is fulfilled and take x,y such
that 1q>(x)=Iq>(Y)= 1 and Iq>(x-y)~s.There exists an index m such that
1'1' ((x - y) XI\! \ {m })~ s/2. Let

N o= {nE N\{m}: unvn<O}

N j = {n E No: lunl ::::; Ivnl}

N 2 = {n E No: lunl > Ivnl}

and put

=0,

n=m

nEN j

otherwise,

=0,

n=m

nEN2

otherwise,

where um, vm are nonnegative numbers chosen in such a way that
LNI CfJn(lunl)+CfJm(luml) = CfJm(um), LN2CfJn(lvnl)+CfJm(lvml) = CfJm(i5m)·
Denoting x= (un), Y = (vn) we have 1'1' (x) = 1q>(Y) = 1 and I'll ((x + y)/2)::::;
I'll ((x +y)/2), immediately. Moreover,

I'll (x - y) ~ max(Iq> ((x - y )/2 XNo)' 1'1' ((x - y) XN\ {m} \No)' (12.2)

Choosing a constant k and a sequence (cn ) in the condition 15 2 so that they
satisfy (0.3) we get

I'll ((x - y)/2 XNo) ~ l/k 1'1' ((x - y) XNo) - s/4k. (12.3)

Since 1q>((X-Y)XN\{m})~s/2, so 1q>(x-y)~s/4 or 1q>(x-y)~s/4k, by
(12.2) and (12.3).

The above lemma is very useful in the proof of the next theorem, because
the investigation concerning uniform rotundity of 1'1' can be limited to
elements with nonnegative coefficients.
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1. THEOREM. The space l<p is uniformly rotund if and only if the following
conditions are satisfied:

(1 ) the function ({) fulfills the condition <5 2 ;

(2) the function (() fulfills the condition (*);

(3) each functions ({)n vanishes only at zero;

(4) there exists a sequence (an)c [0, 1J such that ({)/1(an)+
(() m(am) ~ 1 for all n =1= m and each ({) n is strictly convex on the interval
[0, an], respectively;

(5) the function ({) is uniformly convex in the d-neighbourhood of zero,
where d = (1 - infn ({)n (an)) V !.

Proof Sufficiency. Let I<p(x)=I<p(y)=l, l<p(x-y)~e for some
e E (0, 1), where x = (un), Y = (vn) and Un' Vn are nonnegative. Infimum
expressing the number d is not necessarily attained. Denoting
ex = infn ({)n (an) let ({)o be any Young function strictly convex on [0, ({)o 1 (ex)]
and linear on [({)OI(ex), 1]. We can isometrically imbed the space l<p into lcp,
where ;p = (({)n):~o' So, in the sequel we assume that the infimum is
attained and infn (() n(an) = ({) 1 (a d· Note that the function ({) 1 is strictly con­
vex on [0, ({) 11 (1 - d)]. In particular, if d = 1 then qJ 1 is linear on some
neighbourhood of zero. There exist at most two indices m, k such that
(()m(um)> d and qJk(Vk)> d. First we shall estimate the expression
I <p ((x + y )/2) in the following two situations.

(A) There exist j EN, PE (0, 1), bE (0, 1) such that hj(uj , vj )~ 1 - P
and qJ/uj v vj)~ b.

(B) There exist constants <5 > 0, C E (0, d] and a subset No of N such
that ({)n(un v vn)~c for nENo, LNoqJn(lun-vnl)~<5 and ({)n are strictly
convex on the inverse image of [0, c], respectively, for n E No.

ad. (A) If hj(uj , vj )~ 1 - p and qJj(Uj v vj)~ b then

I<p ((x + y )/2) ~ 1 - (pI2)( (()j(Uj)+ qJj(Vj )) ~ 1- pbl2. (1.1)

ad. (B) Let

E= {nENo: Iun-vnl ~(<5/8)(un v Vn) and Un v VnE(Cn, qJ;I(C)]},

where (cn) is the sequence from Lemma 6 chosen for 1>/8,c instead of e, d.
So, by virtue of Remark 1.1 there exists p = p( 1>, c) E (0, 1) such that
hn(un, vn)~ 1-p for nEE. Hence immediately

I<p ((x + y )/2) ~ 1 - (p12 )(Iq> (XX E) + I <p (YXE)), (1.2)

because I <p (x) = I<p (y) = 1. However, ({)n (Iun- vnl) ~ (1)18)( ({)n (un) + qJn (1)/1))
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or CPn(lun-vnl):(;CPn(2(un Y vn)):(;CPn(2cn) for nENo\E. So, LNo\ECPn
(Iun- vnl) :(; (b/8)(I<p (x) + I<p (y)) + L:~ 1 CPn (2cn) :(; 15/4 + 15/8 < 15/2. Then
LECPn(lun-vnl)~<5/2, by the assumption LNoCPn(lun-vnl)~b. Applying
the condition 15 2 with the constant k and the sequence (cn ) from Lemma 6
we get

15/2 < L CPn (Iun- vnl):(; (kI2)(L CPn (un) + L CPn (V n)) + L CPn (2cn)
E E E E

:(; (kI2)(I<p (XXE) + I<p (YXE)) + 15/8.

Hence I <p (XXE) + I <p (YXE) ~ 3b14k, which in connection with (1.2) gives the
estimation

I<p((x+ y)/2):(; 1- 3pb/8k. (1.3)

Further we shall show that the estimation of I<p((x +y)/2) is always of the
type (A) or (B). We shall consider two main cases.

(I) Let CPn(un):(;d and CPn(vn):(;d for all nEN, n#1. If
CPl (IUl - vd) < el2 then we have (B) with b = e12, c = d and No = N\ {I}. If
CPl (Iul - vll) ~ e12, then by convexity of CPl we have Icpdud - cpdvl)1 ~ el2
and ILn7"l CPn(u,,)- Ln7"l fPn(vn)1 = 11-cpdud-l +fPl(vdl ~eI2. Apply­
ing Proposition 10 with el2 instead of e we will find 15 >°dependent only
on e such that Ln7"l CPn(lun-vnl)~b. So, we also get the case (B) with
c=dand No=N\{l}.

If the case (I) does not hold then we can write, without loss of generality,
the following.

(II) There exists an index k# 1 such that cpdvk»d. It is evident that
we can put d < 1. In the sequel let i be a natural number such that i> 2 and
el2i

:(; 1- d.

-Let fPk(uk):(;d-eI2 i
• We shall find pE(O,l) such that

hk(Ub Vk):(; 1-p, by Lemma 7 applied to d - el2 i
, d in place of ex, [3. So, it

is the case (A) with j = k, b = d.

-Let fPk(uk»d-eI2' and CPn(un)<l-d for each n#k. We shall
show that Ln#CPn(lu,,-vnl»b for some 15 = b(e). Indeed, if
CPk(luk-vkl)~eI2 then ICPk(Uk)-cpdvk)1 ~cpdluk-vkl)~eI2. Hence
ILn# fPn(un) - Ln# fP,,(vn)1 = IfPk(Uk) - fPk(vk)1 ~ e12. Therefore, we find
a suitable 15 by Proposition 10. So, we get the situation (B) for c = 1 - d,
N o= N\{k}.

-Let CPk(Uk) > d- e12' and fPm(um)'~1- d for some m # k. Then

and
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Moreover, we have CPk(Vk) > d and CPm(vm) < 1- d, by the assumption (II).
If

or (1.5)

then applying Lemma 7 with d, d - 8/2i or (1 - d) - 8/2i, 1 - d in place of
rx, /3, we find p E (0, 1) such that hj(uj , v) ~ 1 - p for j = k or j = m. This is
the case (A) with b = d or b = 1 - d. Contrary to (1.5), we have

and (1.6)

Then CPj([Uj - vjl)~ IcpiUj) - cpj(vJI ~d+8/2i_d+8/2i = 8/2i- 1 for j= k, m
by (1.4) and (1.6). Hence Ln#m,kCPn(lun-vn[)~8-CPm(lum-vml)­

CPk(luk-Vkl)~(1-1/2i-2)8. Putting b=(1-1/2i- 2)8, c=l-d,
No = N\ {m, k} we have the situation (B).

In all the cases considered we obtained the estimation of I<p((x+ y)/2)
expressed by inequalities (1.1) and (1.3), where constants p, b, 15, k are
dependent only on 8 and the function cpo So we showed uniform rotundity
of l<p' by Proposition 11 and Lemma 12.

Necessity. The conditions (1 H 4) are satisfied, by Proposition 11 and
Theorem 0.2. To prove (5), let us note that uniform convexity of cP in the d­
neighbourhood of zero is equivalent to the following condition.

For every a E (0, 1) there exists 15 E (0, 1) such that
L,',"= 1 CPn (Un (15, a)) < co, were Un (15, a) = SUp{ UE [0, cp;;l (d)]:
hn (u, au) ~ 1 - 15 }. (1.7)

Assuming that (5) is not satisfied we get

00

I CPn(Unk) = co
n= 1

(1.8)

for each kEN, where Unk = Un (15 b a) E [0, cP;; 1(dn a is some constant
from the interval (0,1) and (15 k ) is a sequence induded in (0,1) such that
15dO. By definition of the sequence (un (15, a)), the inequality

(1.9)

holds, for each n,k EN. In the sequel we shan consider two cases.

(I) There exists bE(O,d) such that limk_oosuPn~mcpn(unk»bfor
each mEN. Hence, one can find increasing subsequences (nj ), (kj ) of N
such that CPn(UndE(b, d] for eachjEN. For simplicity, we put} and vJ in

J J J

place of nJ and unjkj' So CPj(vJ E (b, d] for each) EN.
Assume for the moment that CPj(v) ~! except for at most a finite number

of indices. Without loss of generality, we putCPj(vj )~! for every j EN. We
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can also choose a monotone infinite subsequence of (qJj(vJ - qJj(avJ).
Therefore we can suppose, e.g., this whole sequence to be nondecreasing,
i.e., qJj(Vj ) + qJj+ davj+ d ~ qJj+ dvj+ 1) + qJj(avj ). Then there exists
aj E [a, 1) such that

qJ2j(V2J + qJ2j+ 1 (aj v2j + d = qJ2j + I (V 2j + 1) + qJ2j(aV2j), (1.10)

for every j EN. The expressions from both sides of the above equality are
less than one, because qJj(Vj ) + qJi(av;) < 1 for each i,j EN. Therefore

qJ2j(V2j ) + qJ2j+ 1 (aj v2j + d+ qJl (cj ) = 1

for some Cj > O. Let

Xj = V2je2j + aj v2j+ l e2j+ 1 + cj e1

Yj = av2je2j + V2j + 1e2j + 1+ cj e1 •

(1.11)

(1.12)

We have I",(xj ) = I",(YJ = 1, by (1.10) and (1.11). Moreover,
I",((xj-Yj)/(1-a))~qJ2j(v2j»b for eachjEN. Then I",(xj-yJ~c for
some C > 0 and each j EN, by the condition b2 • By virtue of (1.9) and
definition of (vj ), hj(vj , avj ) ~ 1- bkj" Therefore and by the second property
of hj considered in LemmaO.3 h2j+I(V 2j + 1 , ajv2j+d~h2j+l(V2j+il

aV2j + 1) ~ 1- 0k2j+ 1is satisfied. Hence

I", ((xj + yJ/2) ~ (1 - bk2)( <fJ2j(v2J + qJ2j (av 2j ))/2

+ (1- Ok2J+J(qJ2j+ I (v2j + d + qJ2j+ 1 (aj v2j+ d)/2

+ qJdcJ ~ 1- Ok2J -+ 1,

when j -+ 00, by monotone convergence of (b k ) to zero and (1.10) and
J

(1.11 ).
Now let qJj(Vj ) >! for an infinite number of indices. For simplicity we put

qJj(Vj»! for every jEN. However, qJj(vj)~d, so d>l Then, by (5),
infnqJn(an)<l It implies, by virtue of (4), that the infimum must be
attained. So, we can put infn<pn(an)=qJda l ) and d=l-qJI(ad. The
function qJl is linear on some interval [ai' a 1 ]. Let b l E (ail ad be such
that <PI (bd - <PI (a1) ~ (1- a) b. Hence

<P I ((a1 + b1)/2) = (qJ I (a 1) + qJ 1 (b d/2

<pj(avj ) + <PI (bd ~ <Pj(Vj ) + <PI (a1)

holds for each j EN immediately, because (1- a) b ~ (1- a) <Pj(Vj )~
qJj(Vj)-qJj(avj ), by convexity of <Pj' So, there exist ajE [a, 1) such that

(1.13)
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Moreover, we find Cj :? 0 such that

X j = a j ej + cjeZ + Vjej

Yj=bje j + cjeZ + ajVjej .

319

(1.14)

We have Iq;(x) = Iq;(Y) = 1, Iq;(xj-Yj):?CfJdbj-ad>O for each j:?3.
However, hj(vj , ajvj):?hj(vj , av):? 1-(jk;, by the property of hj and (1.9),
and so

Iq;((xj +Yj)/2):? CfJj (a j )/2 + CfJj (bd/2 + <)Jz(cj )

+ (1- (jk)(<)Jj(Vj ) + <)Jj(aj vj ))/2

:? 1- (jkJ2)(<)Jj(v) + CfJj(ajvJ)

:? 1- (jk ---+ 1,
;

when j ---+ 00, by (1.12), (1.13), and (1.14).

(II) Contrary to (I), for every bE (0, d) there exists mEN such that
limk~ co sUPn",m <)In(Unk) ~ b. Hence we find subsequences (mj ), (k) of N
such that (k) is increasing and

in (u ) < 1/2j + j
~n nkj-""';::::

for each j EN, n:? mj' Moreover, it is known that

(1.15)

co

I CfJn(Unk) = 00,
n~j

co

I <)In(aUnk) = 00,
n~j

(1.16)

by (1.8) and the condition (jz. We shall show that for eachjE N there exist
two disjoint subsets N jj , N Zj of N such that

1-1/2j -
j
~ I <)In(Unk) +I <)In(aunk) ~ 1-1/21,

Nt) N2j

I
I (<)In (Unk) - CfJn (aUnk))
Nt;

- I (CfJn(Unk)-<)Jn(aUnk))! < 1/2
j
+

1
,

N2j

(1.17 )

(1.18)

putting 2::0 = O. Indeed, let j be fixed at present. We put mj EN1j" We have

<)In (Unk) - <)In (aunk) ~ 1/2H 1,

640/47/4-5
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for all n ~ mj , by (1.15). If the sum of the left side of the above inequality
for n = mj and n = mj + 1 is less than or equal to 1/2j+1 then we put
mj + 1 E Nlj. If this sum is greater than 1/2H 1 then we put mj + 1EN2j'
We have always

l
I(<Pm/Umjk) - <Pmj(aUmjk)) - (<Pmj+ 1 (umj+1 k) - <Pmj+ 1

(aum+lk))I:s;; 1/2;+ . If additionally,
J J •

1 - 1/2
j
- l :s;; <Pm/Umjk) + <Pmj+ 1 (aumj+1 k):S;; 1 - 1/2

j
,

then we put Nlj = {mJ and N 2j = {mj + I}. In the opposite case we con­
tinue this process finding sets N lj' N 2j in a finite number of steps, because
(1.15) and (1.16) hold. Let

Xj = LUnk/n+ LaUnkjen
Nlj N2j

Yj= L aUnkjen+ L unkjen·
Nlj N2j

We have I",(xj ):S;;l and I",(YJ:S;;l, by (1.17) and (.18). Moreover,
I",((xj - Yj)/(l-a)) = LNljuN2j <Pn(Unk) ~!, by (1.17), and so I",(xj - Yj) ~ c
for some c > 0 and all j EN. However,

I",((xj + Yj)/2) = L <Pn((Unkj+aUnk)/2)
NljU N2j

~(l-bk) L (<Pn(U nk) + <Pn(aunk))/2.
Nlj uN2j

The right side of the inequality tends to 1, by (1.9), (1.17), and (1.18). We
have shown that if <P does not satisfy the condition (5) then the modular I",
is not uniformly rotund, in all the cases considered above. Then, by
Proposition 11 and Remark 1.2, the necessity of the condition (5) is shown,
which ends the proof.

In particular, if all <Pn are equal, the known criterion of uniform rotun­
dity of Orlicz sequence spaces (Theorem 7 in [7]) is easily obtained from
the above theorem.

Let (Pn) be a sequence of real numbers Pn E [1,(0). By l( {Pn}) we
denote the Nakano space [12]. Then the space l({ Pn}) is the set of all real
sequences x = (un) such that L:~ 1 (l/Pn)IAUnIPn < 00 for some A> 0 depen­
dent on x. Indeed, l( {Pn}) is the Musielak-Orlicz sequence space I""
endowed with Luxemburg norm, if we put <Pn(U) = (l/Pn) uPn, uEIR+. This
space we can isometrically transform in such a way that <Pn(u) = uPn if
UE [0, 1], <Pn(u)=u if u> 1, as we have shown at the beginning of this
paper. Sundaresan in [12J has given a sufficient condition and a slightly
weaker necessary condition for uniform rotundity of l( {Pn})' We shall
show that a criterion of uniform rotundity of 1({Pn}) results from our main
theorem.
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2. THEOREM. The space I({Pn}) is uniformly rotund if and only if

1 < lim Pn ~ lim Pn < 00 and Pn = 1 for at most one index n. (2.1)
n-...,.oo n-oo

Proof Let us note CPn(U) = uPn, UE [0,1]. Suppose the condition (2.1) is
satisfied. There exist P and q such that 1 <P ~ q < 00 and Pn ~ q for all
nEN and Pn~P for almost all nEN. If CPn(u)=UPn~1~8 then
U~(1-8)I/q for 8E(0, 1). It is evident that (1+b)q(1-c:)I/q<1 for some
15 > 0. Hence CPn((1 + b) u) = (1 + b)pnuPn ~ (1 + b)qu ~ (1 + (j)q(l- c:)I/q < 1,
if CPn(u)~l-c:. This shows that CP=(CPn) satisfies the condition (*). The
condition bz is also satisfied, because CPn(2u)~2q+lcpn(U) for all UE~+. It
is enough to prove (5), because (3) and (4) are evident even though one of
Pn is equal to 1. We have the inequalities (see (i 1 ) and (iz) in [7])

((1 + a)/2)pn ~ (1 + aPn )/2 - (( 1- a)/2 yn

((1 + a)/2yn ~ (1 + aPn )/2 - (Pn (Pn - 1)/2)

x ((1- a)/(1 + aW- Pn((1- a)/2yn,

for any number a E [0, 1). Hence it follows simply that

hn(u, au) ~ 1- ((1- a)/2)q(1 + aq)/2 for Pn ~ 2,

hn(u, au)~ 1-(p(p-1)/2)((1-a)/(1 +a))z-P

x ((1- a)/2)Z2/(1 + aP) for P ~Pn < 2, u E [0, 1].

Therefore the condition (5) is fulfilled with d= 1 and (c n ) = (1, 0,... ),
putting PI = 1.

Let the space l( {Pn}) be uniformly rotund. Then the conditions of the
previous theorem must be fulfilled. The existence of n, at most one, for
which Pn = 1, follows easily from (4). Suppose limn _ 00 Pn = 00. For sim-

licity we write limn_ooPn=oo. If un=~I-c: then un-+l when n-+oo.
This contradicts the condition (*). Now, suppose limn_ooPn= 1. There is
an infinite decreasing sequence (PnJ such that Pn,> 1 and limi_ooPn,= 1.
Then

hn,(u, au) = (( 1 + a)/2 yn'(2/( 1 + aPn
,)) -+ 1,

if i -+ 00, for all u E [0,1] and a E [0,1). Therefore the condition (5) cannot
be fulfilled. This completes the proof.

Finally let us note that the case of atomless measure was considered in
[8] for Orlicz spaces and in [5] for Musielak-Orlicz spaces.
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